Status of FLASH RF systems, recent progress and near future upgrades.

Low Level RF Workshop, Chicago, USA, Sept. 29 - Oct. 03, 2019

V.Ayvazyan, A.Bellandi, J.Branlard, L.Butkowski, S.Choroba, T.Delfs, T.Froelich, M.Grecki, T.Grevsmuehl, O.Hensler, M.Hierholzer, M.Hoffmann, V.Katalev, M.Killenberg, D.Kostin, F.Ludwig, U.Mavric, M.Omet, S.Pfeiffer, H.Pryschelski, H.Schlarb, C.Schmidt, S.Schreiber, V.Vogel, B.Yildirim

Outline

01 General layout of FLASH

02 RF status

- High power RF
- Low level RF

03 Recent Improvements

- Operation aspects
- Performance

04 Planned upgrades

- Energy: RF related
- Performance related

05 Conclusion and Outlook

FLASH: General Layout

- SASE FEL at XUV/soft X-ray regime
- Resonance frequency 1.3 GHz
- Pulsed operation at 10 Hz
- FEL wavelength range 4.2 51 nm
 / 4 90 nm

NCRF gun 1.3 GHz

SCRF module 3.9 GHz

TESLA type SCRF modules 1.3 GHz

High Power RF Distribution

- Max. energy: 1250 (1300) MeV
- RF pulse length: 1.3 ms

 Linear RF distribution within cryomodule (except ACC6 & ACC7)

Low Level RF System Overview

- Vector-sum control (1, 4, 8, 16 cavities)
- MicroTCA.4 based standard
 - IF frequency 54 MHz
- Old VME based monitoring system still is available
 - out of loop measurements

Digital Feedback Algorithm

- 5 Super-conducting RF stations
 - 4 x 1.3 GHz system (56 cavities)
 - 1 x 3.9 GHz system (4 cavities)
- 2 Normal-conducting RF stations
 - RF Gun cavity 1.3 GHz
 - Bunch arrival time corrector cavity (BACCA) 2.998 GHz

Piezo Control Status

- ACC1, ACC3, ACC5, ACC6, ACC7 piezo new control (PZ16M) is installed
 - with double stack piezo tuners
- Equipped with Piezo Energy Monitor unit
 - turned off the high voltage PS under excessive power conditions
- Advanced commissioning done
 - established reliable operation conditions
- Development of procedure for automatic mech. tuning on progress
 - in case of cavity detuning is larger than piezo tuning range

Drift Compensation Module

- Measurement of a reference signal before the RF pulse
- Compensate for any phase and amplitude drift taking place inside the mixers at the down conversion stage
- Installed and in operation at all SRF stations

Absolute Amplitude Calibration

[Courtesy: F.Ludwig, C.Schmidt]

Improvements of RF Gun Operation

Automated RF Gun rump-up procedure

- RF start-up/restart by Finite State Machine
- Frequency Sweep keeps the frequency on resonance during pulse length ramp-up
- Pulse Width Modulation controls temperatureovershoot and settles at nominal parameters

Special fast protection system

 Purpose is to detect exceptional events and stop RF driving power

[see poster by L.Butkowski]

Multi-beamline Operation

Flexible beam distribution

Definition of flattop regions via the timing system

 Setting different amplitude and phase set-points / limits via the LLRF systems

Allows e.g. different compression settings for different

bunch trains / beamlines

RF Station Settings

0.70

FLASH1

FLASH3

Flash 2

£00€.07 II

20.00

FLASH2

700.93 us

2.0

-2.0

318.0-

317.0-316.0-

315.0-

314.0-

313.0-

Transmission

Main Timing

ransition ok?

ĵĝ.ĝĝ

1253.2 us

Reset

× 80 ^7ô.ôô

Fast RF Feedback Cavity (BACCA)

Fast arrival time optimization with warm RF cavity

- Correction of arrival time fluctuations which are too fast to be corrected by the narrow bandwidth superconducting cavities
- Goal is to push the arrival time stability below 10 fs
- Fast corrector: large bandwidth normal conducting S-band cavity (~1 MHz, ~kW) controlled by MicroTCA.4 system
- Suppress the residual beam energy fluctuations towards $\Delta E/E \sim 10^{-6}$
- Arrival time measured in bunch compressor section with new high resolution low charge beam arrival time monitors
- Interconnection with the bunch arrival time monitor such that bunch arrival information are in use within a train of electron bunches for fast arrival time feedback

[Courtesy: M.K. Czwalinna, S. Pfeiffer, B. Lautenschlager]

Master Oscillator Improvements

2nd MO (redundant) is in operation

- Long term frequency stability by GPSDO
- Phase stable output if GPSDO reference fails (Vctrl of 81.25 MHz OCXO freeze!)
- Fiber optic GPSDO reference transfer to LPP (reduced exposure to external spurious signals)
- Basic OCXO changed to 81.25 MHz
- 1.3 GHz jitter (10 Hz to1 MHz) maintained at ~45 fs (even with fiber optic TX-RX connection installed)
- 1300 MHz HPA output power increased to 50 W
- Improved cold start behavior by default Vctrl setting (when PLL 1300 MHz - 81.25 MHz not yet locked)

[Courtesy: H.Pryschelski]

Long Term Operation with LLRF System

Statistics

- Overall downtime reduced after first installation (less frequent upgrades, bugs solved, ...)
 - 24h on-call service, LLRF team participating in machine operation shifts
- More improved automation routines, operator trainings, benefit from XFEL combined developments
- Downtime now is dominated by one major event which also take long time to recover
 - Hardware exchange, broken fuses, but less software issues

Downtime distribution to LLRF stations

14

12

10

8

6

4

2

0

RF ACC1 ACC39 ACC23 ACC45 ACC67

GUN

[Courtesy: C.Schmidt]

Long Term Operation with LLRF System (2)

Statistics

- Track down issue to a loose patch panel connection
 - Installation about 5 years before and running without problems
 - Started with FW check/ HW exchange in the first place

[Courtesy: C.Schmidt]

RF Regulation Performance

• RF flattop amplitude and phase stability monitored Specifications: $\Delta A/A \le 0.01\%$, $\Delta \Phi \le 0.01$ deg.

 Algorithms such as the MIMO feedback, Learning FF and Beam Loading Compensation are active

RF Related Upgrades for the Year 2021

Main points

- Two new cryogenic-modules installations
- New waveguide distribution system for two modules (ACC2 & AC3)
- Optimization of waveguide distribution system for two modules (ACC4 & ACC5)
- Two new 10 MW klystrons installations
- Complete upgrade HPRF control (monitoring)
- Fundamental Power Coupler control upgrade for old (ACC4) module

- Complete upgrade of LLRF monitoring system
- Cavity slow frequency tuner control
- Klystron Lifetime Management system installations for all SRF modules
- Complete commissioning and full integration of BACCA cavity into LLRF control
- Commissioning of LLRF control for TDS cavity for FLASH2 beamline
- Master Oscillator upgrade to EuXFEL type

Waveguide Distribution Optimization

Expected energy gain from ACC4 and ACC5: 80 MeV

Proposed Waveguide Distribution System

Matching forward power to each cavity within practical limits

- Each cavity will be powered individually
- Each cryomodule will be powered individually
- Each cavity will have phase shifter
- Each cryomodule will have phase shifter
- RF power measurement in each specific point
- Remoted Q_{load} adjustment (ACC4)

Waveguide branch point for ACC4-ACC7

[Courtesy: V.Katalev]

WGD: ACC2 & ACC3

Planned Upgrades: High Power RF

- New WGD system for ACC2 & ACC3
 - New 10 MV klystron install close to the modules
 - 100 MeV energy gain
- Optimize WGD system at ACC4 and ACC5
 - New 10 MW klystron
 - 80 MeV energy gain
- ACC4 FPCs Q_{load} will be made remote adjustable
- Complete upgrade of HPRF control
 - Klystron/Modulator control upgrade to MicroTCA.4 system
 - WG control: air pressure system
- FPC interlock system upgrade to MicroTCA.4 system

Planned Upgrades: Low Level RF

- LLRF monitoring system upgrade
 - VME to MicroTCA.4
- Cavity slow frequency tuner control
- Klystron Lifetime Management system installations for all SRF modules
- Improve LLRF diagnostic system
- Develop procedures for automatic cavity tuning with piezo for large gradient change
- Complete commissioning and full integration of BACCA cavity into LLRF control

- Algorithms and operational procedures optimization
 - Beam loading compensation
 - Cavity resonance filling [see poster by S.Pfeiffer]
 - Klystron linearization
- Master Oscillator upgrade to EuXFEL type

Possible Long Pulse Upgrade

LP mode of operation at FLASH as a first step towards CW (~3x more Duty Factor)

HV up to 2.8 ms RF up to 2.7 ms RF flat top 2.2 ms

MBK: E3736H

[Courtesy: V.Vogel]

Conclusion and Outlook

- 6 years of stable operation of FLASH with MicroTCA.4 based LLRF system
- Fulfilled stability regulation requirements
- Beam based algorithms are integrated with LLRF system
- LLRF system successfully handles multi-pattern beam for 3 different beam-lines
- Various automation algorithms and procedures are developed *→ [see talk by J.Branlard]*
- Linac energy will be upgraded to 1400 MeV
- RF regulation systems will be completely moved to MicroTCA.4 standard
- New developments (firmware/software) to integrate CW and pulsed modes of operations
- Master Oscillator upgrade to EuXFEL type
- Possible Long Pulse Mode of Operation

Thank you!

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Valeri Ayvazyan, Christian Schmidt

MHFp, MSK

E-Mail: valeri.ayvazyan@desy.de

Phone: +49 40 8998 4911